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AN EFFICIENT SEQUENTIAL NONPARAMETRIC SCHEME 

FOR DETECTING A CHANGE OF DISTRIBUTION1 


BY LOUIS GORDON AND MOSHEPOLLAK 

University of Southern California and Hebrew University of Jerusalem 

Suppose that a system in its standard state produces i.i.d, observations 
whose distribution is symmetric about zero. At an unknown time the system 
may leave its standard state, and the observations would subsequently be 
stochastically larger. Subject to a bound on the rate of false alarms, one 
wants to detect quickly such a departure from the standard state. 

We present a robust method of detection which is computationally feasi- 
ble and remarkably efficient. The method is based on the sequential vectors 
of signs and ranks of the observations. The methodology is one of likeli- 
hood ratio; a sequence of likelihood ratios for these vectors is computed, and 
the Shiryayev-Roberts approach to changepoint detection is then applied 
to yield a class of statistics and associated stopping rules. Inequalities and 
asymptotic approximations for the operating characteristics of these rules 
are developed. These are found to be valid also for small average run lengths 
and early changepoints as well. The relative efficiency of these schemes (with 
respect to a normal parametric shift detection policy) is very high, making 
them a robust alternative to parametric methops. 

1. Introduction and summary. Consider a situation where a process 
yields observations X I ,  X2,  . . . . Initially, the observations follow a distribution 
Fo.At v,an unknown point in time, something happens to the process, causing 
the distribution of the observations to change to F1.Subject to a bound on the 
rate of false alarms, one wants to detect a true change quickly. 

This problem is common in process quality control and arises whenever a 
process is being monitored for potential change. Detection schemes which are 
in use typically are constructed under assumptions that the observations are 
independent, that Fo andF1belong to a parametric family and that at least Fo is 
completely known. A commonly used simple scheme is due to Shewhart (1931). 
Efficient schemes in common use today are Cusum procedures, introduced by 
Page (1954).Let f i  denote the density of Fi,for i = 0 , l .  The Cusum procedure 
is to compute 

fl(xk) ' f l (xk+ 1 )  ' ' ' ' ' f l ( xn)
(1 )  max 

l < k < n f ~ ( ~ k ) ' f o ( ~ k + l ) '  ' fO(xn)' "  

sequentially at each point n in time, and to assert that a change has occurred 
as soon as the statistic (1)exceeds a specified critical level. 
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Moustakides (1986) shows that if the density fl used in computing (1)is 
indeed the true density after the change has occurred, then the Cusum proce- 
dure most rapidly detects a change in distribution among all procedures with a 
common bound specifying an acceptable rate of false alarms. Moustakides' re- 
sult requires a specific technical formulation of the procedure's operating char- 
acteristics. Ritov (1990) shows that in Moustakides' formulation the Cusum 
procedure is a Bayes rule. 

Another statistic has been proposed by Shiryayev (1963) and Roberts (1966). 
This procedure requires the statistician to specify an fl as above, and then 
to compute 

sequentially at each point n in time and again to assert that a change has 
occurred as soon as this statistic exceeds a specified level A. 

Under a formulation of operating characteristic different from that of Mous- 
takides, Pollak (1985) shows that the Shiryayev-Roberts procedure is asyrnp- 
totically optimal as A -, co,when the density fl of (2) is indeed the true density 
after the change has occurred. Pollak and Siegmund (1985) show that the differ- 
ence in the speed of detection between the Cusum and Shiryayev-Roberts pro- 
cedures is small. The Shiryayev-Roberts approach has technical advantages 
which enable one to deal with more complex situations, such as when F1 is 
unknown and the statistician does not wish to specify f l .  [See Pollak (1985), 
(1987).1 It is because of these technical advantages that we here adopt the 
Shiryayev-Roberts approach. 

Nonparametric schemes which have been studied and reported in the liter- 
ature are somewhat different in nature. They generally call for constructing a 
sequence of statistics based on the signs or on the signed ranks of the observa- 
tions. One again asserts that a change has been detected when the sequence 
first exceeds a critical level. Exact computation of operating characteristics is 
typically not feasible, so one is forced to use approximation by Brownian mo- 
tion. The procedures are generally constructed with contiguous alternatives in 
mind; one expects to see many observations before the change, and expects to 
see a small change, if it occurs at all. [For an overview see Bhattacharya and 
Frierson (1981).] 

Recently, McDonald (1990) has proposed a Cusum procedure based on se- 
quential ranks. McDonald's idea is to combine the approximate uniformity of 
sequential ranks with a Cusum procedure for detecting a change from unifor- 
mity to a noncontiguous alternative. 

Neither the Cusum nor the Shiryayev-Roberts approaches have been directly 
applied to the nonparametric likelihood-ratio-based versions of the problem, in 
spite of both their claims to optimality in the parametric case, as well as their 
suitability in handling larger changes in distribution. We attribute this lack to 
the technical difficulty involved in computing likelihood ratios such as needed 
in computing (1)or (2) for signed ranks. The only sequential nonparametric 
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likelihood ratio approach of which we are aware is due to Savage and Sethura- 
man (1966). [See also Miller (1970) and Woodroofe (1983).1 

Here we explore a setting in which one can compute likelihood ratios for the 
signed ranks, and so one can try to adapt the Cusum or Shiryayev-Roberts pro- 
cedures in a nonparametric context. The setting is one where the observations 
are independent, being initially symmetrically distributed about the origin, and 
are stochastically larger after the change than before. We will require our pro- 
cedure to be a function only of the sequence of signs and of the sequence of the 
ranks of the observations' absolute values. Our procedure will be analyzed for 
noncontiguous alternatives. 

Suppose, for the moment, that the initial distribution of the observations is 
known to be double exponential: fo(x) = exp(-1x1). Suppose further that after 
the change the density is known to be fl(x) = p a  exp(-m)I{, >01+ qp exp(px) 
I{,<0}, where a,p,p and q are all positive parameters with p + q = 1.As will 
be shown in Section 2, when the changepoint is k, a result of Savage (1956) 
enables us to compute the likelihood of any finite sequence of signs and ranks 
of absolute values. This lets us compute the likelihood ratio 

likelihoodk(first n observations' signs and ranks of absolute values) 
An -

- likelihood,(first n observations' signs and ranks of absolute values) ' 

where we denote by cc the absence of a change. The natural analog of the Cusum 
statistic is maxl <- k -<. A;; the analog of the Shiryayev-Roberts statistic 

We here study the latter statistic, which we call the nonparametric Shiryayev 
-Roberts statistic (NPSR). Consider the stopping rule 

NA= min{n I Rn 2 A). 

Given a stopping rule N, the standard index for the rate of false alarms is 
IE,{N). One typically controls the level of false alarms by considering only 
stopping rules N which satisfy 

for some specified level B. 
In our case, this means that A has to be set so that IE, NA= B. This requires 

an analysis of lE, NA, which we provide in Sections 2, 4 and 6. We emphasize 
that lE, NA is independent of the actual distribution of the observations, as 
long as that distribution is continuous and symmetric about the origin. The 
double exponential distribution discussed in the previous paragraph is merely 
an artifice for us to define the statistic R,. The sequence of statistics {R,) is a 
function only of signs and ranked absolute values; its distribution when u = oo 
is the same for all continuous distributions symmetric about 0. 
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There are three parameters (a,,B, p )  involved in our proposed scheme. They 
can be chosen arbitrarily. For the problem considered, it would seem appropriate 
to choose 0 < a < 1< ,B < oo and <p < 1.They can be selected with specific 
alternative distributions F1in mind. For example, in the normal parametric 
analog of the problem, suppose that one believes the observations to be dis-
tributed N(0,l)before the change and distributed N(p, 1)after the change, with 
p > 0. One could choose 6 > 0, setfo(x)= qKx) (the standard normal density), set 
fl(x) = $(x- 6)and employ parametric Cusum or Shiryayev-Roberts procedures 
using statistic (1)or (2). If, however, the statistician were reluctant to specify 
normality, he could consider a nonparametric Shiryayev-Roberts scheme. In 
that case the test parameters a,,B and p should be selected to make the non-
parametric likelihood ratios closely resemble the parametric likelihood ratios. 
We showhow to do this in Section 3. In addition, we there show that the relative 
efficiency of the parametric and nonparametric Shiryayev-Roberts procedures 
for normal shifts as B -, oo is very high, suggesting that our nonparametric 
scheme is a robust alternative to parametric methods. 

A Monte Carlo study of our procedures for normal distributions with shift al-
ternatives is the subject of Section 5. We there present evidence indicating that 
our asymptotics provide reasonable guidance in situations of practical interest. 

2. The procedure and its average run length (ARL) to false alarm. 
We first present some background and notation. Lemma 2.1 is found in Sav-
age (1956). 

LEMMA2.1. Let Yl, . . .,Yn be i.i.d. exponential random variables, and let 
xl, . .. ,xn be arbitrary positive constants. Then 

PROOF.Directly, as in Savage (1956),or by induction. 

Now letXl, X2,. . .be independent and, until otherwise specified,assume that 
XI, X2, . . . ,Xu- 1 have common density fo, while X,, Xu+ 1, . . . have common 
density fl, where 15 v 5 oo and 

The parameters a,,B,p and q are assumed positive with p + q = 1. We denote 
the statistics required by the parametric Shiryayev-Roberts statistic with a 
superscript "p": 
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and Nz = min{n ( RP, 2 A). From Pollak [(1987), Theorem 11the following limit 
A exists: 

We shall compute its value in Section 4. 
Define ai = Itxi > 01, giving the sign of the ith observation. We denote the 

number of positive observations among Xk, . . . ,Xn by U(k, n) = Cj",kuj. The 
corresponding count of negative observations is V(k, n) = C h k ( l- uj). When 
k > n we set U(k, n) = V(k, n) = 0, following the convention that summation 
over an empty set is 0. 

Denote the rank of the absolute value of the ith observation among the first 
n absolute values observed by 

Note that p(., a )  is well defined for i > n. Write Zin for the 2-vector (p(i, n), ui). 
The n 2-vectors ZF, . . . , Z t  contain all the information we use from the first 
n observations. 

Because we assume the distributions of the Xi are continuous, the ranked 
absolute values of the first n observations determine the random permutation 
p(., n). Denote its inverse permutation r(.,n), so that p(r(i, n), n) = i for i = 
1,.. .,n. Finally, define 

1, i f j < k ,  
a, i f j > k a n d u j = l ,  
P, if j 2 k and uj = 0. 

By conditioning on the signs of XI,.  . ., Xn, we obtain from Lemma 2.1 an 
explicit form for the likelihood hk(Zr, .  . . , Z t )  for the signs and ranks of ab- 
solute values when the changepoint is k, the prechange density is fo and the 
postchange density is fl: 

valid for 15 k 5 n + 1.Clearly, h,(Zf,. . . , Z t )  = 2-n/n!. Hence, the nonpara- 
metric likelihood ratio based on signs and ranked absolute values is 



768 L. GORDON AND M. POLLAK 

for 1 5 k 5 n + 1. Note that (6) yields A: +,= 1. 
Finally, we define our nonparametric analogs to the Shiryayev-Roberts 

statistics by 

and 

Note that R,  and NA are both well-defined statistics, even if the data are not 
generated under the hypothesized densities. Assertion (9) of the following the- 
orem tells us that the NPSR procedure shares very similar false alarm rates 
with the parametric version, when the false alarm rate is required to be low. 

THEOREM Suppose that when v m the observations X I ,  X2, .  . . are2.2. = 
i.i.d., with double exponential distribution Po.Let 0< a < 1 < p < m be spec- 
ified parameters. Then the parametric and nonparametric Shiryayev-Roberts 
procedures have comparable ARL to false alarm. In particular, 

and 

lim " ~ { N A }  lim I .= Em{NZI = A  ,
A-+m A A A 

If 2pa V 2qp 5 1, then A = l l a .  

We defer the proof to Sections 4.1 and 6. 
We are now ready to describe our procedure: 
Suppose observations X I ,  X2 , .  . . are independent, initially having a contin- 

uous distribution symmetric about the origin, and that at  an unknown time 
v they become stochastically larger. Suppose further that one wishes a mon- 
itoring procedure for change point detection whose ARL to false alarm is to 
be no less than the bound B, as in (3). The NPSR procedure requires that the 
statistician do the following: 

1. specify tuning parameters a ,  P,p and B, the desired ARL to false alarm; 
2. compute at  each observation the statistic R,; 
3. stop and declare a change has been detected at the first time NA that R, 

exceedsA = BlA, and A is given by (9) of Theorem 2.2. (A conservative choice 
for A is to take A = B.) 

We discuss the choice of tuning parameters a ,  ,B andp in Section 3. We show 
how to compute the limit A in Section 4. As an example of the calculations, we 
give in Table 1 the optimal values of a ,  P,p and corresponding A for various nor- 
mal shift alternatives. In Section 5,we present the results of simulation studies 
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% compute NPSR statistic for n observations 
% data assumed in the column n-vector nobsrvd 
% program assumes there are no ties among observations 

sigma = (nobsrvd > = 0); % 1 if observation j positive 

gammas = beta.*(l-sigma) 


+ alpha. *sigma; 

f ctrial = (1:l:n); % column vector of indices 

decr = n:-1:l; % indices in reverse order 

lambdank = zeros(l:n, 1); 

[dummy, rhon] = sort(abs(nobsrvd)); % index of smallest in rhon(1) 


% index of largest in rhon(n) 

rhon = rhon(decr) ; % time of largest in rhon(1) 


% time of smallest in rhon(n) 
[dummy, t am1 = sort (rhon) ; % get inverse ranks 
g-=' = gammas(rhon); % gammas in decreasing rank order 

% gamman(taun(k)) is gamma of kth 
% observed 

sigman = sigma(rhon) ; % signs in decreasing rank order 
for k = l:n, 

lambdank (k, 1) = 


((2*p*alpha) ." ( sum(sigman)) )


.* ((2*q*beta) ."  ((n + 1 - k) - sum(sigman)) ) 


./ prod( cumsum(gamman) ./ f ctrial) ; 

gamman(taun(k1 )=l; 

sigman(taun(k) )=0; 


end; 

srn = sum(1ambdank); 


FIG.1. MATLAB program for computing NPSR. 

which complement the theoretical development for large samples. Simulation 
results suggest that the high efficiency seen in theory may be achieved in prac- 
tical situations. The computations are conveniently programmed. Figure 1is a 
program written in the MATLAB programming language and is the basic code 
used in the simulation results reported in Section 5. See Mathworks (1989) for 
a description of the MATLAB language. Finally, we provide in Section 6 those 
proofs deferred from previous sections. 

3. Speed of detection, choice of parameters and relative efficiency. 
Suppose the change is at  time v and one did not raise a false alarm. I f N  is the 
stopping time used to monitor the process for change, the lag in detecting the 
change is N + 1- v. We adopt IE,{N + 1- v I N 2 v) as an index of the speed of 
detection. See Lorden (1971) for a different formulation. The asymptotic results 
and hence the recipe for choice of parameters a,P and p to be presented below 
do not depend on which of these formulations is adopted. 
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Because v is unknown, one's index has to be a function of the sequence 
{IEk(N+ 1- k 1 N L k)), for k = 1,2, .. . . The standard approach is to use 
suplIk<mEk(N + 1- k IN 2 k). The value limk,,IEk(N + 1- k IN k) is 
of special interest because it expresses the expected lag in detection when the 
change takes place a long time after surveillance was started. As a matter of 
convenience, one replaces the vaguely defined "long time after starting surveil- 
lance" with a limit as the time of change gets arbitrarily large. 

This replacement creates the substantial technical difficulties we encounter 
in Sections 6.4 and 6.5 because it requires us to compute conditional expecta- 
tions over events whose probability tends to 0.[See Roberts (1966).1 The value 
IEl(N I N L 1)is also particularly interesting because one might worry that a 
change has been in effect from the very outset of surveillance. [See Lucas and 
Crosier (1982).1 For many stopping rules, the latter expected lag coincides with 
suplIk<,IEk(N+l-k I N > k ) .  

In the parametric problem, the indices 

SUP I E k ( ~ + l - k l ~ L k ) ,  l i m I E k ( ~ + l - k ~ ~ > k )
l < k < m  k-m 

all typically grow like (constant) . log(A)+ o(1ogA) asA -, oo, where the constant 
depends on the stopping rule but is the same for all three choices of sensitivity 
index. The o(1ogA) term of course depends on the selected sensitivity index, as 
well as on the stopping time. 

When using NA in our nonparametric setting, the situation is different. Al-
though log(A) is still the dominant order of growth, the constant of propor- 
tionality depends as well on the time k at  which the change occurs. Therefore 
consideration of the choice of a,p and p which define the NPSR procedure in- 
volves a preliminary choice of k. 

Following Roberts (1966), we choose 

as our primary sensitivity index of expected lag. Often IEk(N + 1-k I N 2 k) is 
well approximated by its limit as k + oo, even for values of k which are small 
relative to A. Such behavior is also seen in the simulation results presented 
below. Therefore, if one is not unduly concerned that the process might be out of 
control from the beginning of surveillance, then lim supk + IEk(N+l-k I N 2 k) 
is a reasonable choice of index. 

Suppose that Go(x) is the real initial c.d.f. of the observations, known to be 
symmetric about 0 and continuous. Suppose also that Gl(x) is the c.d.f. of the 
observations after the change has occurred and that the statistician uses the 
stopping rule NA. Without changing ranks of absolute values or their associated 
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signs, one can transform the observations to make their distribution prior to 
change double exponential. The transformation is 

where u(x) = I {%,0 ) .  We write G1 Lstoch Go if 1 - Gl( t )2 1 - Go(t)for all 
t ,  the usual definition of stochastic ordering between distributions. Note that 
stochastic ordering is preserved by increasing transformations. 

THEOREM Let Go( .  ) and G I ( .  ) be the true prechange and postchange 3.1. 
distributions. Let both be continuous. Define 

DQ = ( 1-Gl(0))log(2pa)+ Gl(0)log(2qP) 

where the transformation Q(x) is given in  (10). I f  oo > DQ > 0 ,  i f  G I  Lstoch Go, i f  
a < 1 < p and i f p a  2 qp, then 

.&{NA - k  I NA 2 k)lim limsup = 1 
A - + m  k - rm 0,' log(A) 

and 

lim liminf E{NA- k  INA 2 k} = 1.
(14) 

A - r m  k - r m  ~ g 'log(A) 

A sketch of the proof is given in Sections 6.4 and 6.5. 
If Goand G1are the suspected prechange and postchange distributions, then 

one should choose a ,P and p to maximize DQ.Differentiate (11)to obtain the 
critical values 

P = 1 -
1 -Gl(0)a =  

(15) J," Q(x)Gl(dx)' 

For example, if Go = N O ,  1)and G1= N(1, I ) ,  then numerical evaluation of the 
integrals yields 
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We use (15) to compute optimal tunings for various normal shift alternatives. 
These are displayed in the first four columns of Table 1.Specifically, if we antic- 
ipate that prechange distributions are approximately standard normal and the 
postchange distribution is approximately N(p, I), then the tabled parameters 
give an NPSR particularly sensitive to that combination. 

-Note, for example, that the parameters shown in (16) appear in the p = 1 
line of the table. We have slightly understated the utility of NPSR. In actuality, 
because NPSR is invariant to scale changes, the tunings presented in Table 1 
are optimal for detecting shifts in normal mean with unknown scale. 

The asymptotic efficiency relative to optimum (AREopt) as A + m is obtained 
by comparing D;' log(A) to limk,, Ek{NP -k I NP 2 k), where NP is a stopping 
time which would have been used in the parametric case that Go and G1 were 
known to be the true prechange and postchange distributions, and NP is se- 
lected to have comparable false alarm rate IE,{NP) = AA, with A the constant 
of Theorem 2.2.Lorden (1971) evaluates the limit as k + m for the Cusum pro- 
cedure. Pollak (1985) evaluates the limit as k + m for the Shiryayev-Roberts 
procedure. In both cases, the limiting value is of the form 

where the O(1) remainder is bounded as A + m. Because of the optimality and 
approximate optimality results of Lorden (1971), Moustakides (1986), Pollak 
(1985) and Ritov (1990), we therefore compute 

log(A)/ Jrw log(dGl(x)/dGo(x)) Gl(dx) + O(1)
AREo,t = lim 

A -+ Ca D;l log(A)+ O(1)
(17) 

-- DQ
Jrw log(dGi(x)/dGo(x))Gl(dx)' 

the asymptotic efficiency of detection for NPSR relative to both Cusum and 
parametric Shiryayev-Roberts procedures. In the case of normal shift alter- 
natives Go = N(0,l) versus G1 = N(1,l) we obtain AREopt = 0.971, when the 
procedure parameters a,p andp are chosen as in (16). 

In Table 1,we present in column 5 the AREopt for detecting a change from 
N O ,  1)prechange to N(p, 1)postchange, for selected values of p. NPSR and 
Cusum are comparable since both are optimally tuned for the size change which 
is truly realized. AREopt is quite high, never below 94% for the values tabled. 

In column 6 of Table 1we give the other natural comparison of NPSR with 
Cusum. It is possible that one tunes a procedure to behave optimally for a 
specific postchange distribution other than the one which is observed. In column 
6, we give the ARE of NPSR to that of the Cusum procedure, both tuned for 
optimal sensitivity to prechange standard normal distribution, and postchange 
distribution normal with the unit variance and unit mean. ARE'S are computed 
in situations in which the true postchange distribution is N(p, 1).Specifically, 
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TABLE1 
Parameters for various optimal tunings of NPSR-detection of N(0,u2)prechange to N(Pu,u2) 

postchange 

AREopt(17) and ARE (18) 
Optimal tunings (15) at true p; 

'l'rue mean to detect N ( p ,  u2) NPSR vs. Cusum l i m ~  {NA}/A-+
after change postchange both tuned for from Section 4.1 

G~= N(O,I) N(O,I) a ( ~ )  A 
P p(p) a(p) ~ ( p )  GI= N(p,1) N(1,l) lower bound* 

4.00 1.000 0.099 4.694 0.940 1.329 10.1426 10.1426 
* Lower bounds are computed by truncating the series in (21). Lower bounds are within 0.001of A. 

we compute and table 

s-", log (fl (QW)/fa(Q(x)))H ( ~ x )
ARE = 

./-Oom log(dGi(x)/dGg(x))H(dx) ' 

when the denominator is positive and finite, H is the true postchange distri- 
bution and Go and G1 are the distributions used to choose p, cr and in the 
numerator's NPSR. In our case Go is N(0, I), the nominal postchange distribu- 
tion GI is N(1,l) and the true postchange distribution H is N(p, 1).The results 
are surprisingly favorable to NPSR. 

The ARE of NPSR relative to Cusum as a function of the true postchange 
mean p is 97% or above. Lowest efficiency obtains near the value p = 1, the 
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region in which both procedures are optimally tuned for sensitivity. In situations 
where the true postchange mean is far from p, the NPSR does better than its 
parametric competitor. I t  can be shown that ARE grows arbitrarily large as 
p +m. 

Note that (18)is appropriate when both NPSR and Cusum have average lags 
to detection which grow linearly in the logarithm of ARL to false alarm. In the 
case p = 8, the slope corresponding to NPSR is positive (but quite small), while 
the slope corresponding to Cusum is 0. We have indicated the ratio by co.For 
the other values p < 4which we have tabled, slopes corresponding to neither 
NPSR nor Cusum are positive and so we have indicated that our calculations 
do not apply. 

In Section 5, we complement our large-sample results by simulations that 
suggest that column 6 gives a reasonable approximation to the behavior en- 
countered for a practically interesting range of changepoints k and means p 
when attempting to detect a shift from N O ,  1)to N(1,l). 

4. ComputingA. In this section we compute the constant A necessary to 
specify a NPSR procedure for low false alarm rate. In Section 6 we shall verify 
hypotheses that allow us to use general results of Gordon and Pollak (1990). 
Specifically, we use Theorem 1of Gordon and Pollak (1990). The constant A is 
there shown to be 

where the random variables Wj= log( fl(.&)/fo(X,)) are the log-likelihood ratios 
of the observations, and T is the first time the random walk of partial sums 
exceeds the barrier by computed under the PI-measure corresponding to imme- 
diate change. 

In Section 4.1, we provide a simple proof showing that A = l/a whenever 
2pa V 2qp 5 1.This is not only useful in its own right, but provides an easy 
check on the formulas we next derive for A when the special conditions are not 
satisfied. 

In the remaining sections, we specialize known renewal theoretic results 
to the particular fo and fl of (4) and (5). The expression we obtain involves 
the distributions of sums of independent gamma variates with differing scale 
parameters. These probabilities are explicitly evaluated in Section 4.3. Finally, 
in Section 4.4 we show how to compute A with arbitrary accuracy. 

4.1. A = l/a when 2pa V 2qp 5 1. Under the immediate postchange prob- 
ability PI, the log-likelihood ratios Wjare distributed i.i.d. as 

where the Y j are i.i.d. unit exponential, independent of the Bj, which are i.i.d. 
Bernoulli with success probability p .  Because of Jensen's inequality, El {Wj)> 
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0, which implies that T < o;) almost surely. If both log(2pa) and log(2qP) are 
negative, the amount of overshoot above b when the walk stops is exponentially 
distributed with mean a-l - 1,because of the lack of memory of exponential 
variates. Evaluation of the expected overshoot yields the result. 

4.2. The parametric case. For the remainder of this section, we assume that 
X1,X2,.. . are independent with Xk fo for k < v and Xk w fl for k L v. We 
write the following: 

n 

s n  = C w k ;  
k =l 

T+ = min{n ISn> 0, n 2 1); 

7- =min{n ISn5 0, n 2 1); 

F+(x)= PI {STt1x ) ;  

P+ = E1{S,); 
P = ~1{W1); 
T = r b  =min{n)S,  2 b, n 2 1). 

Each of the stopping times T+, T- and r b  are set equal to o;)if its associated level 
is never attained. Note that 

and that 

From renewal theory and (19), we take limits as b -,o;) to obtain 

"OEl {exp [ - (8, - b)]) 3 -1 f ~xP(-Y)( l-F+(y)) dy 

P+ 0 


By Wald's lemma, 

where 
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Next use Corollaries 8.39 and 8.44 of Siegmund (1985) to obtain 

and 

P, {T+= 0;)) = exp 

Substitute in (20) to obtain 

It  remains to compute the probabilities and the exponentiated sums required 
in (21). We write 

Under P,, we represent Xi as (-l)l+*iYi, where Yi is unit exponential and Bi 
is Bernoulli (i),independent of Yi. Hence we may write 

Similarly, under PI, we represent Xi as (-l/P)l-Bi(l/a)BiYi where Yi is again 
unit exponential, and Bi is Bernoulli(p), independent of Yi, so that 

Note therefore that the conditional distribution of Sngiven the binomially dis- 
tributed number of positive contributions is the distribution of a constant plus 
the sum or the difference of two independent gamma variates, under either PI- 
or P,-measures. 

4.3. Sums and differences of gamma variates. Let Yl, Y 2 , .. . be i.i.d unit 
exponential variates. Let G, = C:=lYi when n > 0, and write Go= 0. Let Gh be 
gamma(m, 1)variates independent of Gn. 
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Throughout we let J and 5 be positive constants and let g,, ,be the density 
of Gn/c + Gh/C. We define h,,, to be the density of G,/J - G&/C. 

LEMMA4.1. Let J # 5 be positive. Write x = c/(( - 5) and let z = C/(C - J)  = 
1- x. Then, for y > 0, and  m , n  2 1, 

g n ,  O(Y) = exp(-5y)cnyn - '/(n - I)! 

go,m(y) = exp(-5 y)Crnyrn- '/(m - I)! 

g l , l ( ~ )= xgo,1(y)+zg1,0(y). 

PROOF. The first two assertions are only notational. The third assertion 
follows by directly computing 

P{Yl/J + Y,/C >y)  = ( ~ e - ~ ~- @-&)I(( -0. 
Now differentiate. 

PROPOSITION4.2. Let (# C. Write x = (/(I- C) and  let z = C/(< - J)  = 1-x. 
Then, fory > Oand m , n  2 1, 

PROOF. Denote the convolution operation by "* ".Arguing probabilistically, 
use Lemma 4.1 to obtain 

Iterate (24) until only gj,0 or go,jterms remain. Call a sequence of x's and 2's a 
path. The coefficient ofg, -j, 0 is determined by the number of paths ending in z, 
having exactlyj x's and m 2's. Each such path contributesxjzmto the coefficient. 
The same argument holds for the coefficient ofgo,, - j .  

We now treat the distribution of the difference of two independent gamma 
variates. 

LEMMA4.3. Let J and  C be positive. Write x = (/(I+0,and let z = C/(C +(1 = 
1-X. Then, for m,n > 1, 
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PROOF. The first two assertions are notational. The third assertion follows 
from the exponential distribution's lack of memory. 

PROPOSITION4.4. Let c and < be positive. Write x = c/(c + C), and let z = 
</(<+ c) = 1-x. men, for m,n 2 1, 

PROOF. The proof is formally identical to the proof of (23). 

The similarity of (23) and (25) is of course no accident, as can be seen from 
the characteristic functions of the sum and difference of the variates. In effect, 
we have evaluated the coefficentsin a partial fraction expansion of two formally 
identical characteristic functions. 

4.4. A numerical expression for A. Let G, and Gh be as in Section 4.3. From 
(22) we see that 

where N N binomial(n,p),and that 

where N ~binomial(n,i).Hence we may use standard large-deviation bounds 
and (23) or (25) to compute the infinite sums in (21)to prescribed accuracy. 

The seventh column of Table 1presents values of A calculated to within 
precision 0.001 by the methods described. Specifically, we truncate the series 
(21)and then make use of (23)and (25)to compute the individual terms. Because 
all summands are positive, truncation yields a lower bound on the actual value 
of A. As a reminder that we table lowerbounds, we use the notation A in Table 1. 

Over the tabled range, 2pa V 2qp 5 1for p 2 0.70, and 2pa > 1> 2qp for 
p 5 0.60. Note that the lower bound for the limit A exceeds l/a when p 5 0.60 
and 2pa v 2qp > 1.The lower bound A is less than or equal to l/a when 
p 2 0.70 and 2pa V 2qp < 1.These inequalities are consistent with the results 
of Section 4.1. 

5. Monte Carlo simulationresults. We discussed in Section 3 the choice 
of a sensitivity index of efficiency in detecting that the change in distribution 
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TABLE2 
Expected time to false alarm when v = w, by simulation 

A 100 200 300 400 450 500 

E&{NA/A)%s.e. 
Truncations 
at n = 4500 

1.68% 0.03 

0 

1 .723~0.03 

0 

1.76% 0.04 

1 

1.77% 0.04 

2 

1.78% 0.04 

2 

1.79% 0.04 

6 

has occurred. That index, limk,, Ek{N- k I N 2 k), implicitly depends on 
the parameter A which controls the specificity of the NPSR procedure by con- 
trolling the rate of false alarms when it is known that the prechange density is 
symmetric about 0. Theorem 2.2 tells us how to choose A to yield low rates of 
false alarms by evaluating the constant A, which depends on the initial density 
only through its symmetry. 

In order to assess the NPSR procedure's suitability, we need to know how 
well the asymptotic approximations for low false alarm rates (i.e., for large A) 
actually behave for finite values of the parameters. In this section we provide 
evidence which suggests that the asymptotic results are useful in selecting the 
parameters a,P,p and A which in turn control the NPSR procedure's specificity 
and sensitivity. 

In particular, we study the procedure for a = 0.53,P = 1.7 and p = 0.8413. 
The choice of these values is discussed in Section 3. They are chosen to be 
appropriate when the prechange density is standard normal and the postchange 
density is shifted to the right by one unit. Because 2paA2qP < 1, we use Section 
4.1 to evaluate A = 1.887 = 110.53. Use of Theorem 2.2 therefore suggests the 
use of the NPSR stopping time N419 SO that ARL to false alarm equals 792. 

In Table 2, we give the results of a simulation experiment which approxi- 
mates E,{NA/A) forA E {100,200,300,400,450,500), using 1000 realizations 
of the NPSR procedure. For all choices of A but the smallest, our asymptotic 
approximation is about 7% higher than that observed in the simulation ex- 
periment. Use of the limiting values over the range of our experiment would 
therefore result in the choice of threshold A about 7% too low. 

To compute (6)for a single choice of k requires O(n) time. Note that our proce- 
dure requires O(n2) time to compute (7) for n observations. In light of Theorem 
2.2 and Jensen's inequality, the computer time required for one simulation ex- 
periment when v = co will grow at least as rapidly as O(A3), imposing a limit 
on the size of simulation we could undertake. 

In actuality, the tabled values are biased estimates. We really present means 
of realizations of (to A NA +A V Rt,ANA)/2,where we have truncated the stop- 
ping time NA at to = 4500. Because the sequence R, -n is a martingale under 
the v = co measure, the downward bias is due to truncation. 

We next give some indication of the rapidity with which NPSR detects a 
change in distribution. In Table 3, we provide a comparison of detection lags 
for the normal parametric Cusum and Shiryayev-Roberts procedures with the 
NPSR procedure having a = 0.53,P = 1.70 andp = 0.8413. All three procedures 
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TABLE3 
Expected lag of Cusum and Shiryayeu-Roberts parametric procedures and NPSR in detecting nor- 

mal shifts, by simulation 

True 

drift Rule v = 1 v = 21 v = 5 1  v = 1 0 1  v = 2 0 1  v = o o  

0.75 	Cusum 16.05% 0.21 15.59% 0.23 15.18f 0.22 15.92f 0.22 15.953~ 0.23 781.0f 15.1 
N i  16.78f0.2014.57f0.1814.98f0.2014.46f0.1914.55f0.19805.5f16.2 
N450 19.84f0.21 15.86f0.23 15.18f0.24 15.67f0.25 14.94k0.24802.4f 16.7 

1.00 	Cusum 10.10f 0.11 9.25 f 0.10 9.26 f 0.10 9.21 f 0.11 9.27 f 0.11 781.0 f 15.1 

N i  10.76f0.10 9.21f0.10 9.27f0.10 9.09f0.10 9.19f0.10805.5f16.2 

N450 14.92f0.1110.34f0.12 9.68f0.12 9.63f0.13 9.73f0.13802.4f16.7 


1.50 Cusum 5.61f 0.04 5.11 f 0.04 5.21 f 0.05 5.18 f 0.05 5.12 f 0.05 781.0 f 15.1 

N i  6.20f0.04 5.21f0.04 5.17f0.04 5.19f0.04 5.21f0.04805.5f16.2 

N450 11.77f0.04 6.33f0.05 5.87f0.06 5.60f0.06 5.51f0.06802.4f 16.7 


are tuned for the normal shift case of detecting a change from N O ,  1)to N(1,l). 
Tabled are lags in detection for various true drifts, p E {0.75,1.0,1.5), which 

occur at  various times v E {1,21,51,101,201). All procedures have critical 
value selected to yield nominal ARL to false alarm equal to 792 under the 
v = m measure. The values for the normal parametric Cusum and Shiryayev- 
Roberts procedures are taken from Pollak and Siegmund (1989). The asymptotic 
approximation of Theorem 2.2 would lead to a choice of A = 792/1.89 = 419. 
In light of Table 2, we have chosen to use the nonparametric rule N450, a 7% 
adjustment over the asymptotic approximation. 

Reported are sample means ofNA -(v-1)for those of an original 2000 simu- 
lations for which NA 2 v. Analogous quantities are reported for the parametric 
procedures. In the case v = 1, the parametric procedures are clearly preferred 
to the nonparametric, for detecting an immediate change. On average, the cost 
of using our nonparametric scheme is between four and six additional observa- 
tions taken postchange and before detection. 

The situation when v > 50 is much more favorable to the nonparametric 
procedure. The average cost of using the nonparametric procedure is about 
additional observation before detection. On a relative basis, in the situation 
p = 1for which all procedures are tuned, our nonparametric procedure takes 
about 5% longer on average than the parametric procedures in detectng the 
change. These small sample values are consistent with our claimed 97% ARE. 

The situation is intermediate when v = 21 with the nonparametric proce- 
dure taking about one additional observation on average to detect the change, 
relative to the parametric procedures. 

6. Proofs. 

6.1. Proof of (81, Theorem 2.2. We show IE,{NA) = IE,{RNA) L A. Let Fn 
be the sigma field generated by the signs and ranked absolute values of the 
first n observations. Observe that (R, - n, Fn)is a martingale with zero expec- 
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tation under P,, and so IE,{NA Am) = IE,{RN~ ,,m )  for any finite m. Hence, by 
monotone convergence, 

From Lemma 6.7, proved below, there exists a constant K for which (26) is 
bounded above by KA+A. Hence P, {NA< CQ)= 1, and lE, {RNA)2 IE, {NA). 
The reverse inequality follows from Fatou's lemma applied to the truncated 
times NAA m. 

6.2. Outline of the proof of (91, Theorem 2.2. Because IE,{NA) = lEm{RNA), 
we study IE,{NA) by analyzing E,{RNA). We make precise below that under 
the P,-measure, the nonparametric likelihood ratios A; + l through A: +J are 

well approximated by A;fl(Xn + l)/fo(Xn+1) through A~II!=l[fl(Xn+ i)/fo(Xn+i)l 
when k is close to n. We then appeal to our knowledge of the overshoot in the 
parametric case. 

Here is the heuristic reasoning underlying the assertion. If A is large, the 
nonparametric procedure probably will not stop until a substantial number of 
observations have accrued. Hence, for fairly large n, the empirical distribution 
of the first n - j  observations should be close to the true prechange distribution. 
If j is small relative to n, we should practically know the values ofXn-j through 
Xn+jfrom their corresponding signs and ranks of absolute values. Hence the 
relative magnitudes of the nonparametric likelihood ratios A; + _ i ,should there-
fore be close to the analogous relative magnitudes of the parametric likelihood 
ratios for 0 5 i, it 5j. 

By analogy with the parametric problem, we hope the influence of Ck<, A: +j 

upon R,+j will be negligible, as will be the contribution by for k > n to 
R, +jwhen R, is very large. If we can establish these approximations, we would 
be led to believe that the P,-behavior of R,+ 1 through R, +jshould be much 
like the behavior of Rn[fi(Xn+ l)/fo(Xn + 111 through R n q= i[f1(Xn+i)/fo(Xn+ill, 
when the base R, is large. It will then follow that the level of overshoot in 
the nonparametric problem will be the same as in the parametric problem, 
asA 4 CQ. 

This reasoning is formalized in [Gordonand Pollak (1990),Theorem 11. What 
needs to be shown is that conditions (a),(b)and (c)of that theorem are satisfied. 
For the sake of convenience we state the theorem here. 

THEOREM6.1. Suppose that the following three conditions hold: 
(a) Let 0 < €1,€2 < 1be given. There then existpositive constants a l ,  a2 and 

as depending on €1and €2 such that, for all n 2 1, 
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(b ) Let 0 < E < 1 be given. There then exist positive constants 0 < 1, b l ,  b2 
and a set Be,  all depending only on E such that, for all n 2 1, 

mar l - % /  
fi(Xn + 1; > ~ ) c h e x p ( - b ~ n )

( 1 - B ) n < k < n + l  fa(& + 1 

and 

( c )  For t 2 1 there exist finite functions Ao(t)  and ~ ( t )  + 0such that ~ ( t )  
as t + ca and such that if M 2 0 is any stopping time adapted to Fn and 
NT = N = min{n] 

+ lAt  2 A ) ,  then 

uniformly for all A >A&), all t 2 1 and all stopping times M. 

Suppose also that the log-likelihood ratio log(f l(X)/ fo(X)) has a continuous 
distribution when theprechange density is fo( 1. We may then conclude that 

An alternative condition which implies condition (c)  is  that, for some positive 
constants 6,K' and Ao, 

for stopping times N ,  M and A >A. as in the statement of the theorem. Suffi- 
ciency of this condition for (c)  follows from the Holder and Markov inequalities. 

W e  now proceed to demonstrate the validity of conditions (a)-(c). W e  shall 
repeatedly use the following elementary large-deviation inequality, where 
Bin (j ,  8)  denotes a binomial variate of j trials and 0 success probability: 

valid for all E > 0. 

6.3. Proof of (S), Theorem 2.2. 
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6.3.1. Theorem 6.1, condition (a)holds. Rewrite (6) as 

Let 

for 15 k 5 n .  Consistent with this definition, let p(k - 1,k) = 1. Now define 

for 1 5 i, k 5 n. Note that IE,{q(n,i, k)) = 0 because the average term in 
(27)is a sample mean, where the uniformly distributed permutation generated 
by the ranked absolute values has been used to select a simple random Sam- 
ple without replacement from a finite population consisting of the following: a 
binomial(n - k + 1, %)number of individuals with characteristic a ;  the comple- 
mentary binomial number with characteristic 4; and k - 1with characteristic 
1. Hence 

[ ~ ( k- 1,k)/ [(a+ p)/2]1 -

Note for any -co :,y < m, that (1+ y / x Y  increases in x > 0 v -y. Hence 
(2p(n, k)/(a + p))nis increasing in n. Write 

and observe that X < 1. Hence, 
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We now need a large deviation result for simple random sampling without 
replacement. The inequality will be used in showing that  A; is negligible when 
k is  far from n with high P,-probability. The connection with simple random 
sampling is through the uniform permutation distribution by which the ranks 
are assigned independently to observation order under the P,-measure. 

LEMMA6.2. Consider a finite population with scalar characteristics ((1, . . . , 
Cm).Assume Cy= = 0 and that maxi <, I(i / < b. Let & be the mean of a simple 
random sample of n individuals, taken without replacement. Then there exists 
a constant Q = Q(b)independent of n and m such that 

PROOF. The lemma is an  immediate corollary of the remark following The-
orem 6-in Kemperman (1973).For the sake of completeness we sketch the proof. 
Write % for the mean of a size n simple random sample taken with replace-
ment from the same population. Kemperman (1973)proves that  sampling with 
replacement is a dilatation of sampling without replacement, hence for all t, 

Consider the moment generating function f(t) = m-lCy= exp(tCi).By hypothe-
sis, f ' (0)  = 0.  Use of a Taylor series expansion yields f(t) < 1+ b2t2exp(b)/2 for 
ltl < 1.Also, f(t) < exp(blt1)for all t. Hence there exists a constant K = K(b) for 
which f(t) < exp(Kt2),for all t. Now use the Markov inequality and dilatation 
to establish 

The inequality follows by setting t = ne/2K and repeating argument for the 
lower bound. 

In the next two lemmas, we bound the denominator of the right-hand side 
of (29). 

LEMMA6.3. There exist positive constants bl = and b2 = bg.3)such 
that, for all n 2 1and all positive E < 1, 

P, { 'fJ[I+ "'"*'I p(n,k) c expl-~n)for some I. r k 5 n 

PROOF Set 6= min{-(e/2)/ log(a A 2a/(a  + P)),112). For all 1< k < n, 
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Hence, 

' (n li1k ) ]  < e x p ( - ~ n )for some 1 5 k Infi [ I  + 
i = l  A n l  k )  

< exp (-:&) - for some 1 5 k 5 n 

Write M(n ,  k )  = (aU(k ,  n )  + PV(k, n )  + k - l ) / n ,a linear function of a binomial 
( n + 1 - k , i)variate. Also, note that E,{M(n, k ) )  = p(n, k )  and that M(n ,  k )  is 
the mean of ' ( n ,  i ,  k )  + p(n, k )  over the uniform permutation distribution in- 
duced under IP ,  by the locations of the ranked absolute values of observa- 
tions. Hence we may apply Lemma 6.2 to ' ( n ,  i ,  k )  + p(n, k )  -M(n ,  k ) .  Because 
1 + ' ( n ,  i ,  k ) / p ( n ,  k )  2 a ( 1 + ( a + ,B)/2)-', there exists a constant ( for which 
log(1+x)2 ( x ,  for all 02 x 2 a(1  + ( a  +P)/2)-' - 1. By Lemma 6.2, there exists 
a constant Q such that 

"nl i1k ) ]  < cap(-~n) for some I. _< k _< nfi [ I  + p(n, k )  i = l  

< --' I 2  for some 1 < k < n
1 - 6 

' ) < --' I 2  for some 1 _< k 5 n
1- 6

i = l  

Ln(1- 611 

5 C IP,{q(n, ~ ( n ,  
a&/4  

for some 1 5 k Ini ,k )+ p(n, k )  - k ) < 
( ( 1- 6)i = l  


a ~ / 4 
+ ~ , { ~ ( n , k )- p(n ,k)< -----for some 1 Ik In 
( ( 1- 6)  

for some constant c, from which the result follows. t~ 


We now complete the proof that condition (a) holds. We prove a stronger 
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version of the condition than is immediately needed. The extra strength is used 
in Section 6.4. 

LEMMA6.4. There existpositive constants bi = b:6.4)such that,for allpositive 
E < 1and all n > bl/&, 

PROOF.Let X be as defined in (28), and recall X < 1.Choose 6 > 0 such that  

and write A' = (1+ X)/2. Set E' = & ( I +  log A'), so that E' < E. Finally, choose 
bl = 2 log(1- A')/ log(X1).These choices imply 

(A') nE < exp [ - (E - ~ ' ) n ] ,
1- A' 

for all n 2 bl/&. 
Define the event 

with complementary event Bo.We now use Lemma 6.3 to show 

An + 
-

(pal4P) 
U(k, n)  -(i+ 1-k)/2 

> exp(-~n)and Bo
exp(-e'n)

k =l I 
6(n + 1- k) 

> exp [- (E - ~ ' ) n ]  
k =l 4P Pa 

2 exp(-S2ne)
exp (- bf.3)n(~')3)+ 

1- exp(-S~E)' 
from which the lemma follows. 
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6.3.2. Theorem 6.1, condition (b)holds. Define the hnction 

Note that p(n + 1, n + 1) = rn(Xn+ 1) .  Recall that the vectors Zy = ( p ( j ,n ) ,aj) 
of ranks of absolute values and signs were used in Section 2 to obtain the 
nonparametric likelihoods hk(Zy,. . . ,Z:) and subsequently in (6), the nonpara- 
metric likelihood ratio A;. So long as there are no ties among the observations, 
there is a function such that 

The next lemma makes precise the intuition that, with enough data, we 
can reconstruct the parametric log-likelihood ratio of the next observation with 
arbitrarily high precision. We prove a stronger form of the lemma than is needed 
to prove condition (b). The extra strength, provided by the conditioning in the 
statement of the lemma, is intended as a prototype of the proof of Lemma 6.8. 

LEMMA6.5. Let the true prechange distribution be the double exponential. 
Given 0 < E < 3, let BE= (log(3~),- log(3~)).Define, for k 5 n + 1, 

~ ; + l ( < n ( z y ,. .  . ,z:,(rn(X),~{x>o} 

L,"(x)= log 


A; (Zy , . . . ,2;) 

There exist positive constants bl = b2 = b f 5 '  and b3 = b(36.5',which do not 
depend on E, such that 

sup IL ; (x )>bl  <b2exp( -b3c4n) ,  
X E B Cn ( 1 - e 2 ) < k < n + 1  

for all n 2 1. 

PROOF.Define H(y) = 1 - e-Y fory > 0. Define the events 

B -,<x<, I n + l~ H ( ~sup - X ~ ) 
with respective complements B1 and &. 

Because IXl 1 , . . . , IXn I are i.i.d. as H under P,, because the empirical dis- 
tribution function of their absolute values is independent of Yn under P, and 
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because IP, { X I  $2B E }= 3~by construction, the result of Hu (1985)implies that 
there exist positive constants bb$and b$ such that, for all n 2 1, 

Write r X ( j ,n + 1) for the values of the inverse rank r ( j ,  n + 1) induced by 
observations X l ,  . . . ,Xn, x. Write 

From (6) ,we obtain 

= log((2p)'{x>0} 0 ) )  + logyx(n+ 1,  k )  (2q)'{x< 
n + 11 Z: ~2 ( rX( j ,n + I ) ,k)

n + 2 - r n b )j=rn(x)  

Now consider k such that ( 1- E2)n 5 k 5 n + 1. Recall a 5 1 5 P. There 
exists a constant b > 0 for which we bound (30)on the event B1 by 
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because k 2 r,(x) and only n + 2 - k of the y,(~,(j,n+ I),k) do not equal 1. 
Similarly, on the event B1, (31)is bounded below by 

and above by 

Hence, on B1, (31)is approximable uniformly in x using 

for some (possibly different) b. Because (32)is a telescoping series, 

for some (possibly different) constant b. Finally, on the event B1 nB2, one ob-
tains by a Taylor series argument that 

log I-- -log l - ~ ( ~ xl ) ) i  < 6 ~ .I ( ;:>( 
Hence for some b we have shown IL;(x)I < b ( ~+ (n&)-l)on the event B1 nB2, 
having sufficiently high conditional probability. 

Given E > 0 we now establish condition (b).Let b(,6.5)and b(6.5)3 be the 
three constants found in Lemma 6.5. Choose integer nl and positive ~1 such 
that E > 3 ~ 1and so that bf .5)(~1+ l/(nlel)) < E. Set 6' = E;. Hence, for n 2 nl, 
the probability required by the condition is bounded by b(,6.5)e ~ ~ ( - b f . ~ ) ~ i n ) .  
Now set b2 = b f . 5 ) ~ iand bl = b(,6.5)exp(banl)to make the condition hold for all 
choices of n. 

6.3.3. Theorem 6.1, condition (c) holds. The next lemma tells us that the 
most recent observation-if positive-influences the nonparametric likelihood 
ratio in a monotone fashion. 

LEMMA6.6. Suppose 0 < a 5 1< P < oo.IfX, > 0, then A; (and therefore 
R,)are nondecreasing functions of X,. 
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PROOF. Rewrite (6) as 

(2pa)U(k,n ) ( ~ ~ p ) V ( k ,n) 
A," = n:=,[(l/(n - i + 1))E;=Y(dj,n),k)] 

By hypothesis, y(n,k) = a = min{a, P, 1) for k 5 n. Clearly, p(n,n) is non-
decreasing in Xn. As Xn progressively increases, it contributes the minimum 
possible value, a ,  to increasingly many sums in the denominator. Hence, the 
denominator decreases, increasing A,". 

The following lemma now establishes the validity of condition (c). 

LEMMA6.7. Suppose 0 < a 5 1 5 P < oo and a < P. Given M 2 0, a 
stopping time adapted to 3n,define the new stopping time 

There exist constants 6> 0 and 6 = d6,")> 1such that 

uniformly for all A > 1,all stopping times M 2 0 and all n. 

PROOF. Condition first on {Xn+ 1 < 0 and N = n +1and 3%).Note that A > 1 
implies that n 2 1.We use (6)with an+ 1 = 0 to obtain 

By assumption, a 5 f IP, so the last sum of differences is nonnegative in each 
term. Hencelog(A,"+ I)-log@) < log(2)+log@)-log(a), so that A," + < 2PA,"/a, 
on the set under consideration. Because A: + = 1,we obtain Rn+ 1 < 2P(Rn+ 
l)/a < 2P(A + l)/a on the event in question. 
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Now condition on {Xn + 1 > 0 and N = n + 1and 3n) .  We again use (6).Recall 
P = max{a, 1,P ) ,  so that, for k 5 n + 1, 

2 log(A;t.)+ log(2p)+ log(a)- log(P) 

(34) 

- n - i + 2  log ( ~ ; = ~ ~ ( ~ ( j , n ) , k ) ) ] . :  - n - i + l  
i =l 

We continue to follow the convention that summation over a null set of indices 
is zero. Write 

L(n, i, k) = log - log in - i + 2  n - i + l  

Note that L(n, i, k) 5 0. 
Recall that Fnis the a-algebra generated by the sequence of signs and ranks 

of absolute values in observation order. By virtue of the monotonicity estab- 
lished in Lemma 6.6, there is a random threshold po 5 n + 1depending on the 
conditioning events only through Fnand an+l.The threshold is the least rank 
which p(n + 1, n + 1)could attain and still permit c ; ~ . _ + & + ~ A E + ~to exceed the 
level A. 

We substitute po - 1for p(n + 1,n + 1)in (34) to obtain 

and 

Write p = p(n + 1,n  + 1). Apply the identity (33) to each A;t.+l for k 5 n + 1 
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to obtain 

1 A;" < 2p 1 A; exp - L(n,i, k) exp - '1L(n,i, k) L '1 J I 	 Jk = M + l  i = l  	 i = P o - l
(37) k = M + l  	 r o n - 2  1 r 0 - 1  1 

Now choose and fix K and integer D such that 1-a lp  < K < 1and - log(1-
(1-a/P)/m) < Klm whenever m 2D. On the conditioning events, y(n+ 1,k) = a 
for k < n + 1.Hence, 

P - 1  a = - log ('- 1 

(38) 	 i = p o- 1 
n + 2 - i  ['- r(dj,n). k)] /(n - i + 1) 

P - 1 

n + 2 - i
i = p o - 1  

< -D log(1 -K) +K log(;;I:)). 
yielding a common upper bound for all k < n + 1. 

Now combine (35), (36), (37) and (38), yielding the inequality 

on the sets in {Fn and Xn+l > 0 and N = n + 1). 
The crucial observation is that, under the IF',-measure, Fn carries informa- 

tion about a random permutation, but not about the unsigned magnitudes of 
the underlying variates which generated the permutation. Hence the rank of 
the (n + 1)th absolute value is uniformly distributed over (1, .  . . ,n + 1). Hence, 
given 3;,and Xn+l > 0 and p(n + 1,n + 1) 2 po, the rank p(n + 1,n + 1)has 
uniform conditional distribution over {pol . . . ,n + l ) ,  enabling us to compute, 
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f o r  0 < 6 < (1-K ) / K ,  

F i n a l l y ,  apply (39)and the latter inequality t o  obtain 

Em { [ A:+'] '+' 1 N = + 1and 3, andXn+l> 0 
k = M + 1  

proving the lemma. 

6.4. S k e t c h  ofproof of (l3),Theorem 3.1. We here s h o w  that, for arbitrary 
positive 6 ,  

for all A > A. s u f f i c i e n t l y  large. This inequality, in c o m b i n a t i o n  with that o f  
Section 6.5, establishes the equalities (13)and (14). 

Our p r o c e d u r e  depends only on the signs o f  the o b s e r v a t i o n s  and the relative 
ranks o f  their a b s o l u t e  values in the order in which they were observed. There-
fore, we assume w i t h o u t  loss o f  generality that the data have been t r a n s f o r m e d  
symmetrically about 0 to  make the prechange density truly double e x p o n e n t i a l .  
Denote this s y m m e t r i c  transformation by Q(.) .  

By assumption, the true p o s t c h a n g e  measure is absolutely c o n t i n u o u s  with 
respect to  the p r e c h a n g e  measure. D e n o t e  the p o s t c h a n g e  density of the trans-
f o r m e d  observations by gQ( . ) ,  determined by the o r i g i n a l  p o s t c h a n g e  density 
and the t r a n s f o r m a t i o n  Q( . ) .  We c o n t i n u e  t o  write fl(.) f o r  the density ( 5 )used 
t o  define the NPSR p r o c e d u r e .  We emphasize that in the following d i s c u s s i o n  we 
d o  not assume that fl(.) = gQ( . ) .  We remind the reader that P 1 - p r o b a b i l i t y  refers 
to  the d i s t r i b u t i o n  in w h i c h  all o b s e r v a t i o n s  f o l l o w  the true p o s t c h a n g e  distri-
b u t i o n  with density gQ,and that the true p r e c h a n g e  distribution is assumed to 
have density fo. 

By a s s u m p t i o n ,  cr < 1 < /3 and pa > qp, implying q < i.Use (6) t o  show 
A: < (2q)n+1-k o n  {X, < Xn-l < . . .  < Xl < 0). Hence o n  that event R, 5 
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2 q ( l -  2q)-1, and so P,{NA > n )  > 0 for all n and all A large enough. We are 
therefore free to compute Pa-conditional probabilities given {NA > v), for v 
arbitrarily large, without fear of conditioning on null events. 

We require the following straightforward extension of Lemma 6.5, stated 
without proof. In a slight abuse of notation, we write At(x l , . . . ,x,) for the non- 
parametric likelihood ratio based on the ranks induced by the data sequence 
x l ,  . . . ,x,. Observe that At = 1 for k > n .  

LEMMA6.8. Let s be a fixedpositive integer and let E E (0 ,i).Define the set 
B, as in Lemma 6.5. Define 

There exist positive functions 9 = B ( E ,  s )  and bi = bi(&,s )  such that 

sup sup [ L : ' ~ ( X ~ , . . . , X ~ ) ~ > Esup <blexp(-b2n) .
l S t I s ( x l ,...,x t )EB:  ( 1 - B ) n $ k < n + s  

Lemma 6.8 allows us to approximate the behavior of changes in nonparamet- 
ric likelihood ratio by their corresponding parametric values. Such approxima- 
tion is only good for probabilities. Our plan is to prove good approximations in 
probability, and then to bound the contribution to expectations on egceptional 
sets of small probability. Lemma 6.7 gives us a tool for proving such bounds. It  
is exploited in Lemmas 6.9 and 6.10, stated and proved next. 

The parametric likelihood ratio fl(x)/fo(x)is increasing over the full range 
of its argument, so long as pa  2 qp. The following lemma gives an analogous 
monotonicity property for the nonparametric likelihood ratio. Note that the ad- 
ditional hypothesis pa > qp is needed to obtain results stronger than those 
given in Lemma 6.6. We refer to the ranks of the absolute values of the obser- 
vations as their "absolute ranks." 

LEMMA6.9. Let n 2 k > m be given. Let $(.) be a function such that 
$(x)  5 x for all x. Denote by A . ( x l , .  . . ,x,) the nonparametric likelihood ratio 
determined by the signs and absolute ranks induced by the sequence of mea- 
surements x l ,  . . . ,x,. I f p a  > qp,  then 

for all choices of x l ,  . . . ,x,. 

PROOF.From (6), 
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where U(m,n) counts the number of positive observations seen on or after 
time m. By hypothesis, there are at  least as many positive observations among 
x,, . . . ,X, as among xl, . . . ,x, $(xm+ . . . ,+(x,), so that the numerator contri-
bution to the nonparametric likelihood ratio belonging to the unmodified data 
is at least as large as that of the modified data. 

We now show inequality in the same direction for corresponding factors in the 
denominator. Consider, say, the ith term in the denominator. It is an average 
of n + 1- i contributions, all of which are either a or 1 or P. The absolute 
rank of negative observations seen on or after time k can only increase, so all 
those observations contributing p to the sum before transformation continue 
to contribute ,8 after transformation. Hence the number of contributions of 
magnitude p cannot be less in the ith term belonging to the transformed data. 

Similarly, if an observation contributes a to the ith term in the denominator 
for the transformed data, then it must have contributed a to the corresponding 
sum in the untransformed data, because the absolute ranks of observations 
which remain positive can only decrease after transformation. Hence the num-
ber of contributions a in the untransformed data cannot increase after trans-
formation, and so the total of the n + 1- i summands in the original ith term 
must be no greater than the n + 1- i summands making up the ith term for the 
transformed data. 

The next lemma uses the coupling we have just proved. The hypothesized 
stochastic ordering of prechange and postchange distributions gives us a func-
tion +(x) = G;'(G~(X)) satisfying the conditions of Lemma 6.9. 

LEMMA6.10. Assume GI >stoch Go are both continuous and that p a  > qp. 
There exist a constant A. and functionsy(A)and vo(A)such that A >A. implies 

for all positive integers v > vo(A). 

PROOF.Let A be given. We implicitly determine A. and vo(.)during the 
course of the argument. Recall that, from invariance considerations, we assume 
without loss of generality that the true prechange distribution Go equals the 
double exponential distribution Fo.We continue to write Wi = log(fl(Xi)/fo(Xi)). 
Let S = 6(A)= P,{exp(Wi) > 2A). Let 

so that (1- 6(A) /2)~(~)5 AP2. 
Define the stopping times Tm= inf{j I cF=+~+lA;lm+j >A). Because GI kStoch 

Go, the function +(x) = G;'(G~(X)) satisfies the conditions of Lemma 6.9. Let 
XT = Xj i f j  < v, and XT = +(Xj)i f j  2 v. By continuity of Go and GI, the XT are 
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i.i.d. as Gounder the P,-measure. Use Lemma 6.9 to write 

< E u{Tv (X:,X;,.. .) -v;Tv(X:,X; , . . . )  > v + y a n d N A> v  

=E,{Tv(X~,X2,. . . ) - v; T,(Xl, X2,. . . )  > v + y  andNA > v}. 

Now condition on 3"and apply Lemma 6.7 to show 

Ev{NA-v ;  NA > V + Y )  
(41) 

5 ( ~ c ( ~ . ~ ) A+y)P,{Tv > n +y I NA > V}P,{NA > v). 

Use Lemma 6.5 to choose A. and vo(A)sufficiently large that 

for all A >A. and all k > vo (A).Finally, observe that 

By successively conditioning on earlier and earlier a-fields, we obtain from 
(41) that  

which can be made as small as desired by makingA large. 

We now can show (40)for allA >A. sufficiently large. Let 0 < 6 < be given. 
LetAo,no and E be constants whose exact values will be chosen and fixed in the 
course of the argument. By hypothesis, DQ = El{log (fl(Xl)/fo(Xl))} E (0,m). 
Hence there exists Ah > 1such that A >Ab implies 

We now do the following: 

1, write t = L(1+6)log(A')/DQjand s = rlog(S/A)/ log(26)1, so that A(2V < 6; 
2. choose positive E < log(1 + 612) such that P1{Xl &! BE) < S/t for BE as in 

Lemma 6.8; 
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3. define events 

Bj = {Xi G BEfor all v + ( j- 1)t 5 i 5 v + jt - 1): 
v + t j - 1

log( A v + t ( j - l ) ( X l r  Xu-1, X I ! . . .  r ~ t j )  
Cj = { sup u + j t - 1  

(XI,...,x~,)€B! IIj= u + (j-11, [fl(xj)/fo(xj)] 

with respective complements Aj,Bj and Cj;note that NA 5 v + tj - 1 on 
Aj nBj nCj,because then A, :{>::)t >A; 

4. use Lemma 6.8 to choose no such that v > no implies 

for any 1 5 j 5 s. 

Given 1 5 r < s, observe that the events Cj are measurable with respect to the 
first v - 1 observations, so that 

r 

NA 2 vand n { ~ j ~ ~ ~ , )  
j =  1 

L P.. { N A  2 v and + (26yP,{NA > v }  
i = 1 

Finally, we use (42)to bound probabilities and Lemmas 6.9 and 6.10 to bound 
the expectation taken over an event of sufficiently small probability, thereby 
showing 

S 

i t  P , , {N~ > v ) + ~ ~ , { ~ ~ > v + t r -1)  
r = l[ I 


+IEu{NA- (V + st); NA > v + s t )  

Because the inequality holds for v sufficiently large, and because st = 0 ( l o g 2 ~ ) ,  
we have established (40). 
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6.5. Sketch ofproof of (l4), Theorem 3.1. We finally show that, for arbitrary 
positive E, 

liminf IEu{NA- v I NA 2 u) > (1-E ) D ~ 'log(A),
u - + m  

for all A > A. sufficiently large. We continue to assume that the data have 
been transformed by Q to make the prechange density truly fo. We need a lower 
bound; hence we show Pu{NA- v > (1- E ) D ~ 'log(A) ( NA 1 v) can be made 
arbitrarily close to 1for sufficiently large v.The chief technical difficulty comes 
from our taking limits in which the probability of the conditioning event tends 
to 0. Fortunately, Lemma 6.8 is stated conditionally, so the assertion will be true 
if Ru is small when the change occurs. This intuition is formalized in Lemmas 
6.11 and 6.12. 

We continue to denote the parametric log-likelihood ratio by Wi. We assume 
throughout this subsection that cu < 1,so that IE, {exp[(l+cu)Wll) < m.Because 
W1 has a moment generating function in aneighborhood of 1,there exist positive 
constants S and w such that 

(43) I P { ( W) < (1- 6) expi-2wjl for all j 2 1i > 6. 

Because a false alarm is raised when a very few adjacent observations ap- 
parently behave as if they came from the F1postchange distribution, it is often 
useful to think of NA under P ,  as if it had an exponential distribution with 
mean AA. The following lemma says that this heuristic device is not too bad, 
even in the extreme tails of the distribution of NA. 

LEMMA6.11. There existpositive constants A. and bi = b!6.11) and a function 
no(A) such that, for all A >Ao, 

1 b 2 v ( y 4 ~ ) ]
P,{NA 2 v} > bl exp - , 

for all v > 0, and 

for all v > no(A). 

PROOF. Let A. be a positive constant whose value is only implicitly deter- 
mined. We assume throughout that A > Ao. The values of E = o ( ~ o ~ - ~ A )and 
no = 0( log13~)will be specified immediately before (47). 



799 SEQUENTIAL NONPARAMETRIC DETECTION 

Let 6 and w be as in (43), and let s = [2log(A)/wl, so that exp(-ws) IA-2. 
Now define sums for m > n by the following: 

Note that, form > n, RkW is an Fm-martingale and that RkP is a submartingale. 
The set B, is defined in Lemma 6.5. Recall that B2, cB,. We require E < $ 

and nE > 1.For t a positive integer, define the events 

Bb = {Xn+jE B4, for all 1<j Is) ,  

BI = {R,":: < (1- 6)Rn exp(-jw) for all 15j < s ) ,  

A:+J/~: +J- 1 

max log (
1 < jI s (1- E Z ) ~Ik 5 n f1(Xn+j)/fO(Xn+j) 

= ieXp IBy ( 3Wi) < (1- 6) exp(-2jw) for all 15j 5 s , 
i = n + l  

6A 
for all 15j 5 st 

B3 = {R:,"~ < l for  all 1< j5 st) ,  

with respective complements Bi. 
We first show that Bo almost contains Bb. By the independence of the empir- 

ical distribution and the order in which the observations appear, 
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valid for all nc > 1and all j > 1. Hence, 

P, {Bo~byn)< 2s exp(-2c2n). / 
By the independence of the observations P,{Bb / Fn) > 1- 12sc, so that 

We now show that BOBl almost contains BbB/1B:.Choose n to make s < nE2. 
Hence n( l  - c2)> (n + s)(1- Use (46) and Lemma 6.5 to conclude 4 ~ ~ ) .  

P,{BoBbB', / 3;,)> 1-~ ( 1 2 ~  -+ 2 exp(-2c2n)) bf.5)s e ~ p ( - b : ~ . ~ ) ~ ~ n ) ,  

valid for all E and n such that by,5)(2c + (2cn)-l) < W .  NOW use (43) to obtain 
that 

Because BiB: c B1, we may choose and fix &(A) = c 1 / l o g 2 ~and no = no(A)= 

lc2 log13 AJ such that 

for all n > no. Set t = r6Ac2/(28s)l and write a = st = log-^^). 
Because B1B2B3 n {NA> n) c {NA> n + s), we use (46) and (47) and apply 

the submartingale maximum inequality to both R:!~ and R:::., thus concluding 
that 

P,{NA > n + a )  

2 P,{NA > n + cr and BOB1B2B3) 

> I P ~ { N A > ~ ~ ~ ~ B ~ B ~ )
1 

where we use Lemma 6.4 and (c3, c4) = (bf.4)1bf,4)) for the last inequality. Hence 

6 
(48) P,{NA > n + a )  > -P, {NA> n) - 2c3&-lo exp ( - c4c6n),

4 

whenever A >A. and n > no. Write 0 = 614. Iterate the inequality to show 

> eJPm{NA> n). 
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Now choose A. to ensure as well that 0-I e ~ ~ ( - c ~ ~ ~ a )< i,and set n = 2no so 
that  

P,{NA > 2no+jcu) > QJP,{N~> 2no) - ~ c ~ E - ~ ~ o J -exp( - 2c4&'no) 

- 4c3~-1~-10exp( - 2c4~'n0).I 
Because no = lo^'^^), the lower bound is itself bounded below by 8112 for A 
sufficiently large, from which (44) follows. 

Assertion (45) follows immediately from (44) and (48) because the latter's 
remainder term decays more rapidly than the lower bound for P{NA > n). 

The next lemma formalizes the intuition that if the nonparametric 
Shiryayev-Roberts statistic Rn is not very large, then it is very small. 

LEMMA6.12. There exist constants bi = bj6.12)and A. and a function no(A) 
such that both A >A. and n > no(A)implies that 

IE, {R,; NA > n) < bl log2(~)P,{NA > n - b2log2A) 

and that 

bl log2A
P,{NA > n / NA > n  - b210g2~)> 1-

A . 

PROOF.We implicitly determineA0 and no(A)in the course of the argument. 
Throughout we assume n > no(A)and A >Ao. 

Let s = rw-I log A1 and t = r- log(A)/ log(1- 6/2)1, where w and 6 are defined 
in (43). Let E = 1/log A. Write n* = n - st and n;, = n* + is. We shall define 
below an auxiliary Fn-stoppingtime N* taking values nTi, for 15 i 5 t. For any 
such stopping time, 

t 

E,{Rn; Na > n) = CIE,{R,; NA > n a n d N ' = n & )  
i = l  

(49) < AP,{N' = n andNA> n*) 
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We now proceed to construct a stopping time N* that, with high probability, 
will stop before time n and then will leave RN*small. This is accomplished by 
a construction similar to that used in the proof of Lemma 6.11. Given 1 I i I t ,  
define events 

Now define the Fn-stopping time 

N* = n r\ min{n(*i,/ 1 < i 5 t and BOG)nBl(i)is true), 

following the usual convention that an infimum over an empty set is infinite. 
The identical argument leading to (47)shows that 

for all 1 5 i < t and all A and n sufficiently large. 
By successive conditioning and repeated application, the last inequality im- 

plies that (49)is bounded above by A ( l  - 6/2)t-1P,{NA > n*).Recall that 
A:* = 1 for n* < k. Because it is composed of likelihood ratios, (50)is equal 
to stIP,{NA > n*).The martingale property of the individual likelihood ratios 
allows us to bound (51)by 

<Aexp(-SW)P,{NA > n*).  

Finally, we use Lemmas 6.4 and 6.11 to bound (52)by P,{NA > n * )for all A 
and n sufficiently large. Hence, 

proving the first assertion and implicitly determining the constant bi. 
Finally, we prove the second assertion using the first. Because R, is a sub- 

martingale and the A; are martingales, 

P,{n > NA > n*)  <A-~IE,{R,; n > NA > n * )  

< A-'E,{R,; NA > n*)  
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for some constant bl, where the last inequality follows from (45) for A and n 
large enough. 

The rest of the proof of (14) is rather straightforward. Use (6)to show that, 
for all k 5 n, 

Recall that DQwas defined in the statement of Theorem 3.1. Choose and fix 
A sufficientlylarge, s = O(logA),6> 0 and E = O(log-'~). (The last is for use 
with Lemmas 6.8 and 6.4.) Conditional on the event {NA>_ n), an 3,- l-event, 
Lemmas 6.8,6.4,6.11and 6.12 and the strong law of large numbers imply there 
exist no(A)and ( = ((A) > 0 such that n > no(A)implies 

Rn- 1+ S  < log'^) [exp( s (~Q+ 6)) + (2p(n + s))' exp(-no] 

with arbitrarily high Pn{.  I NA > n)-probability, proving the required lower 
bound. 

7.Remarks. 

1. A similar analysis could be done when the postchange distribution is a more 
complicated mixture of positive and negative exponentials. However, the 
technical difficulties are formidable and-given the high relative efficiency 
of the simple schemes-do not currently promise rewards commensurate 
with the effort necessary to analyze them. 

2. It is conceivable that the NPSR scheme might be substantially robust when 
faced with symmetric contamination. 

3. It seems intuitively clear from the proof of Theorem 2.2 that the nonpara-
metric likelihood ratios A; should be almost the same as the parametric 
likelihood ratios when v = co and k is close to n. Because, when v = co, 
only these A; contribute substantially to R,,it seems plausible that R, = 
R; + op(l).Such an argument might provide an alternative proof to Theo-
rem 2.2. This approach might also facilitate an analysis of a nonparametric 
Cusum scheme. 

4. One might be tempted to use the methods of this paper for hypothesis test-
ing. Efficiency against contiguous alternatives will be low. Difficulties arise 
because the sign test is the locally most powerful rank test for shift alter-
natives with the double exponential density. Similarly, when v = 1,all the 
information about the shift is essentially in the signs of the observations, 

, again resulting in the relatively unsatisfactory lags seen in Table 3. 
5. Our approach can be used to detect a change in distribution from Go(.) 

prechange to GI(.)postchange in the case when it is known that G1is stochas-
tically larger than Go.See Gordon and Pollak (1991)for details. 
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